A Truncated Projected Newton-Type Algorithm for Large-Scale Semi-infinite Programming
نویسندگان
چکیده
In this paper, a truncated projected Newton-type algorithm is presented for solving large-scale semi-infinite programming problems. This is a hybrid method of a truncated projected Newton direction and a modified projected gradient direction. The truncated projected Newton method is used to solve the constrained nonlinear system. In order to guarantee global convergence, a robust loss function is chosen as the merit function, and the projected gradient method inserted is used to decrease the merit function. This algorithm is suitable for handling large-scale problems and possesses superlinear convergence rate. The global convergence of this algorithm is proved and the convergence rate is analyzed. The detailed implementation is discussed, and some numerical tests for solving large-scale semi-infinite programming problems, with examples up to 2000 decision variables, are reported.
منابع مشابه
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملNumerical experiments in semi-infinite programming
A quasi-Newton algorithm for semi-infinite programming using an Leo exact penalty function is described, and numerical results are presented. Comparisons with three Newton algorithms and one other quasi-Newton algorithm show that the algorithm is very promising in practice. AMS classifications: 65K05,90C30.
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 16 شماره
صفحات -
تاریخ انتشار 2006